time series - Recursive daily forecast -
i doing recursive one-step-ahead daily forecast different time series models 2010. example:
set.seed(1096) datum=seq(as.date("2008/1/1"), as.date("2010/12/31"), "days") r=rnorm(1096) y=xts(r,order.by=as.date(datum)) list.y=vector(mode = "list", length = 365l) (i in 1:365) { window.y <- window(y[,1], end = as.date("2009-12-30") + i) fit.y <- arima(window.y, order=c(5,0,0)) list.y[[i]] <- forecast(fit.y , h = 1) }
the list looks this:
list.y [[1]] point forecast lo 80 hi 80 lo 95 hi 95 732 -0.0506346 -1.333437 1.232168 -2.012511 1.911242 [[2]] point forecast lo 80 hi 80 lo 95 hi 95 733 0.03905936 -1.242889 1.321008 -1.921511 1.99963
....
[[365]] point forecast lo 80 hi 80 lo 95 hi 95 1096 0.09242849 -1.1794 1.364257 -1.852665 2.037522
and want extract forecast value each period [1]-[365], can work forecast data. however, not sure how this. tried
sa=sapply(list.y[1:365], `[`, 4)
but this:
$mean time series: start = 732 end = 732 frequency = 1 [1] -0.0506346 $mean time series: start = 733 end = 733 frequency = 1 [1] 0.03905936
...
$mean time series: start = 1096 end = 1096 frequency = 1 [1] 0.09242849
but want 365 [1] values in numeric vector or something, can work data.
just use this: sa2=as.numeric(sa)
. sa2
numeric vector of forecasted means.
Comments
Post a Comment